
166

EVALUATION OF REDIS IN-MEMORY BASED CACHE

ALGORITHM ON WEB APPLICATION DATA ACCESS

PERFORMANCE USING IRCACHE DATASET

THE EFFECT IN-MEMORY BASED CACHE SYSTEM ON WEB APPLICATIONS IN

IMPROVING DATA ACCESS PERFORMANCE

Fazelian Alsya Pramudia*1, Mulki Indana Zulfa1, Muhammad Syaiful Aliim1

*Email: fazelian.pramudia@mhs.unsoed.ac.id
1Electrical Engineering, Jenderal Soedirman University, Purwokerto, Indonesia

Abstrak

Dalam era digital, penetrasi internet di Indonesia mencapai 79,5% pada 2024, menjadikan kinerja website kunci untuk

pengalaman pengguna optimal. Waktu respon lambat dan beban server tinggi dapat menurunkan kepuasan pengguna.

Sistem caching, dengan penyimpanan sementara data, menjadi solusi untuk mempercepat akses dan mengurangi

beban server. Berbeda dengan RDBMS yang terbatas karena berbasis harddisk, In-Memory Database seperti Redis

menawarkan kecepatan lebih tinggi dengan penyimpanan di RAM. Penelitian ini mengevaluasi efektivitas caching

pada aplikasi web berbasis Laravel melalui simulasi beban menggunakan Apache JMeter dan dataset IRCache.

Pengujian algoritma cache Least Recently Used (LRU), Least Frequently Used (LFU), Random Replacement (RR),

and First In First Out (FIFO) pada berbagai skenario beban pengguna menunjukkan pengurangan response time rata-

rata sebesar 63,78% dan kenaikan throughput rata-rata sebesar 32,84% dibandingkan tanpa caching, dan algoritma

yang lebih unggul pada seluruh dataset yaitu RR sebesar 62,06%. Penelitian memberikan kontribusi dalam

pengembangan strategi caching efisien untuk aplikasi web berskala besar menggunakan Redis.

Kata kunci: aplikasi web, cache, cache replacement, IMDB, RDBMS, Redis

Abstract

In the digital era, internet penetration in Indonesia reached 79.5% in 2024, making website performance crucial for

optimal user experience. Slow response times and high server loads can reduce user satisfaction. Caching systems,

which temporarily store data, offer a solution to accelerate access and reduce server load. Unlike RDBMS, which is

limited due to its reliance on hard disk storage, In-Memory Databases like Redis offer higher speed by storing data

in RAM. This study evaluates the effectiveness of caching in Laravel based web applications through load simulation

using Apache JMeter and the IRCache dataset. Testing of cache algorithms Least Recently Used (LRU), Least

Frequently Used (LFU), Random Replacement (RR), and First In First Out (FIFO) under various user load scenarios

showed an average response time reduction of 63.78% and an average throughput increase of 32.84% compared to

non-cached systems. Among all datasets, the most effective algorithm was RR with a performance gain of 62.06%.

This research contributes to the development of efficient caching strategies for large-scale web applications using

Redis.

Keywords: web application, cache, cache replacement, IMDB, RDBMS, Redis

Volume 21 Nomor 2 (2025) Hal. 166-174
e-ISSN 2527-6131

http://jurnaldinarek.id

mailto:e-mail.penulis1@unsoed.ac.id

DINAMIKA REKAYASA VoI.21 No.2 (2025)
p-lSSN 1858-3075|e-lSSN 2527-6131 | http://jurnaIdinarek.id

167

I. INTRODUCTION

 In the current digital era, web-based

applications have become integral to daily life. The

Indonesian Internet Service Providers Association

(APJII) reported that in 2024, Indonesia had

221,563,479 internet users, with a penetration rate of

79.5%, marking a 1.4% increase from the previous

year [1]. A website is a collection of interconnected

web pages stored on the same server to provide

information to users [2]. With the growing number of

users, website performance is crucial for delivering an

optimal user experience. Slow response times and

high server loads can reduce user satisfaction, making

caching a viable solution to enhance web application

performance. Caching enables temporary storage of

static and dynamic data to accelerate access and

reduce server load [3].

 In database systems like MySQL, the query

cache feature stores SELECT statement text and

results to avoid re-executing identical queries.

However, in some conditions, query cache can reduce

efficiency if it becomes too large or is frequently

invalidated due to write operations [4]. Relational

Database Management Systems (RDBMS) remain a

primary choice for data storage due to their ACID

properties, which ensure transaction integrity, but

disk-based storage slows data access as data volume

grows [5]. As an alternative, In-Memory Databases

(IMDB) like Redis offer faster performance by

storing data directly in RAM. IMDBs have been

widely adopted by cloud providers such as Amazon

Web Services, Google Cloud Platform, and Microsoft

Azure for their ability to increase throughput and

reduce latency [6]. According to Zulfa et al. (2020),

Redis proved more effective in memory usage and

had the fastest execution time compared to other

databases like Memcached, H2, Cassandra, and

MongoDB [5].

 Cache management requires optimal

replacement strategies to determine which data to

evict when the cache is full [7]. The Least Recently

Used (LRU) algorithm replaces the least recently

accessed data to make room for new data [8], while

Least Frequently Used (LFU) retains objects with the

highest request frequency, maintaining historical

access statistics [9]. The Random Replacement

algorithm removes items randomly, though this

approach is not always efficient [10]. First In First Out

(FIFO) replaces the earliest cached item with the

newest, applying a queue-based method for cache

management [11]. With the right algorithm, caching

can enhance web application efficiency and optimize

data access times for users.

 Few studies have empirically compared

LRU, LFU, FIFO, and Random Replacement (RR)

algorithms under varying user load scenarios using

Redis in the Laravel framework. Previous research,

such as Ridhalri et al. [3], compared Redis and

MySQL performance for news data delivery based on

response time metrics. Julastri et al. [12] investigated

Redis and PostgreSQL performance, testing FIFO,

LFU, and LRU eviction algorithms across different

network conditions (5G, 4G, 3G, and offline). These

studies highlight Redis’s significant potential as an in-

memory caching system for accelerating web

application performance. Averoes et al. [13] applied

Redis as an in-memory caching mechanism in PHP

web applications, while Joshi et al. [14] implemented

Redis in a cloud-based payment gateway, measuring

response time, throughput, and hit ratio. Su et al. [15]

compared caching algorithms FIFO, LRU, VBBMS,

Req-block, and HaParallel based on response time in

SSDs. Chen et al. [16] compared LRU with GCaR-

CFLRU, a hybrid of GCaR and CFLRU, on modern

flash-based SSDs using response time metrics. Hou et

al. [17] compared a user activity-based cache

replacement strategy with LFU across varied object

access scenarios in an information-centric network

and electronic music composition system. Zulfa et al.

[18] compared cache replacement algorithms LFU,

FIFO, LRU, GDSF, GDS, SIZE, and LFUDA using

the IRCache internet traffic dataset, finding that LRU

exhibited excellent hit ratio performance for regular

internet traffic. However, these studies have not

comprehensively explored caching algorithm

comparisons under varying user loads in Laravel, as

addressed in this research.

II. RESEARCH METHOD

This research began with a literature review

and concluded with an analysis of application

testing results. The research phases are shown in

Figure 1.

file:///C:/Users/mulkiiz/Downloads/1858-3075

DINAMIKA REKAYASA VoI.21 No.2 (2025)
p-lSSN 1858-3075|e-lSSN 2527-6131 | http://jurnaIdinarek.id

168

Figure 1. Research step

A. Preparation and Literature Review

The initial phase of the research began with a

literature review to gain in-depth insights into the

research topic, involving the search for references

related to caching systems, cache replacement,

RDBMS, IMDB, Redis, and web-based applications.

This phase continued with formulating the research

problem, defining research objectives, and identifying

the benefits and limitations of the study. The aim was

to provide a solid theoretical foundation and outline

the direction of the research.

B. Application Design and Cache System Strategy

This phase involves designing the application

and implementing the cache system to be used within

it. Application design includes developing application

features and defining how caching is integrated as a

feature. The application was built using the Laravel

framework with PHP programming language, and the

data used was sourced from the IRCache dataset.

 The IRCache dataset is an accurate global

proxy dataset collected from proxy servers located in

four cities in the United States: Urbana Champaign

(UC), Boulder (BO2), Silicon Valley (SV), and New

York (NY).

As shown in

Figure 2, the application features several key

components: Auth, Popular Data, and All Data. The

Auth feature enables users to log in and register to

access the application. The Popular Data feature

displays a table of cities with the highest data

frequency based on the IRCache dataset, covering

Urbana-Champaign (UC), Boulder (BO2), Silicon

Valley (SV), and New York (NY), thus aiding in

identifying access patterns and optimizing caching

strategies. Meanwhile, the All Data feature provides

full access to data from these cities, enabling in-depth

analysis of data distribution, content types, sizes, and

access times. By integrating the IRCache dataset, this

application serves not only as a data management

system but also as an analytical tool to understand

user access patterns based on location and enhance

caching efficiency.

Figure 2. Application architecture

file:///C:/Users/mulkiiz/Downloads/1858-3075

DINAMIKA REKAYASA VoI.21 No.2 (2025)
p-lSSN 1858-3075|e-lSSN 2527-6131 | http://jurnaIdinarek.id

169

Figure 3. (a) popular data and (b) displaying all data.

Figure 3 illustrates the caching strategy workflow.

The features to be implemented in the caching system

are Popular Data and All Data. The data for the

Popular Data feature will be retrieved based on the

frequency of identical data IDs, with caching applied

to this feature to ensure frequently needed data

remains readily available, thus reducing query load.

Caching for the All Data feature aims to alleviate the

query burden of displaying all data, expected to

reduce access time and lighten the database load. This

research will utilize four algorithms LRU, LFU,

FIFO, and Random Replacement. By comparing

these four algorithms, the study will identify which

algorithm performs better in handling cache storage

when it reaches full capacity.

The data used from the IRCache dataset will

include sections BO2, NY, SV, and UC. Each section

consists of 19,000 data entries with variables

including user ID, date, timestamp, client address,

HTTP code, request method, size, URL, hierarchy

data, and content type. Testing will be evaluated using

the metrics RT (Response Time), TH (Throughput),

and HR (Hit Ratio).

Table 1. Testing scheme for the all data feature

Feature User Maxmem

ory

City Alg Metric Data

All

Data

50 1 MB, …,

 8 MB

UC,

BO2,

SV,
NY

LRU,

LFU

RR
FIFO

RT,

TH,

HT

19000

Table 2. Testing scheme for the popular data feature

Feature User City Metric Data

Popular
Data

100, …, 800 UC, BO2, SV, NY RT, TH 20

C. Application Development Phase

This phase will incorporate the Database

Management System (DBMS) model, as shown in

Figure 1, with an In-Memory Database (IMDB), as

depicted in Figure 1, which retrieves data from the

memory cache.

Figure 4. Database management system model

Figure 5. In-memory database model

 Figure 5 illustrates the workflow when a user

sends a data request to the application via the web

server. The backend first checks the cache, if a cache

hit occurs, the data is directly returned to the user.

However, if a cache miss occurs, the data is retrieved

from the database, stored in the cache, and then sent

to the user. In contrast, Figure 4 depicts a system using

only a DBMS, where every request is directly

forwarded to the database without cache checking,

and the results are returned to the user through the

web server.

D. Application Testing Preparation

 This phase involves setting up the testing

environment using tools to simulate user interactions.

Apache JMeter will be used to simulate users

(threads) accessing application endpoints via HTTP

GET methods. The application will be tested and

compared before and after the implementation of the

caching system.

 Based on previous research references in the

introduction, the testing metrics to be used are as

follows:

1. Response Time

The time required for the server to respond

file:///C:/Users/mulkiiz/Downloads/1858-3075

DINAMIKA REKAYASA VoI.21 No.2 (2025)
p-lSSN 1858-3075|e-lSSN 2527-6131 | http://jurnaIdinarek.id

170

after receiving a request.

2. Throughput

The amount of data transmitted per unit of

time during the testing process.

3. Hit Ratio

The ratio of successful data requests found in

the cache compared to the total number of

data requests. [12].

𝐻𝑖𝑡𝑅𝑎𝑡𝑖𝑜 =
𝑡𝑜𝑡𝑎𝑙ℎ𝑖𝑡

𝑡𝑜𝑡𝑎𝑙𝑜𝑓𝑎𝑙𝑙𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
𝑥100%

E. Application Testing

 This phase of the research involves testing the

developed application based on predefined

parameters: response time, throughput, and hit ratio.

The testing will compare results across different

users. Specifically, the popular data feature will be

tested, as will maxmemory and four different

algorithms applied to the all data feature.

F. Analysis of Application Testing Result

 This phase is the final phase of this research.

In this phase, an analysis is conducted on all data

obtained from the application performance testing.

After the analysis process is carried out based on the

metrics measured during the testing, conclusions are

then drawn based on the theories and literature that

have been studied previously.

III. RESULTS AND DISCUSSION

A. Testing of the Popular Data Feature Using

Response Time and Throughput Metrics

In the Popular Data feature, testing was

conducted using 8 different scenarios, each with a

varying number of users: 100, 200, 300, 400, 500,

600, 700, and 800 users. Each test was configured

with a ramp-up period of 1 second, meaning that

virtual users were started incrementally every 1

second. The loop count was set to 1 so that each user

would send a request only once. Additionally, within

each thread group, an HTTP Request configuration

was added to send a GET request to a specific server

endpoint.

The endpoints used in this testing were

divided into two types. The endpoint /populer/{city}

was used to access data without caching, while the

endpoint /populer/cache/{city} was used to access

data with caching. The HTTP method used was GET,

and the cities tested included four different locations:

NY, BO2, SV, and UC.

(a) (b)

(c) (d)

file:///C:/Users/mulkiiz/Downloads/1858-3075

DINAMIKA REKAYASA VoI.21 No.2 (2025)
p-lSSN 1858-3075|e-lSSN 2527-6131 | http://jurnaIdinarek.id

171

Figure 6. Response Time Testing Results for Each Dataset of the Popular Data Feature:

(a) UC, (b) BO2, (c) SV, (d) NY

(a) (b)

(c) (d)

Figure 7. Throughput testing results for each dataset of the popular data feature:

(a) UC, (b) BO2, (c) SV, (d) NY
Table 3. Average response time metric results for the

popular data feature testing.

AVG Response

Time (ms)

UC BO2 SV NY

Without Cache

13528 14199 13727 13438

Cache

Implementation 11216 11078 10524 10867

Table 4. Hasil pengujian fitur data populer rata-

rata matriks throughput

AVG Response
Time (ms)

UC BO2 SV NY

Without Cache

18.2 17.5 16.9 17.65

Cache
Implementation 23.7 23.8 23.2 22.6

 After testing was conducted, Figure 6 and

Figure 7 show that the implementation of a caching

system is more effective compared to no cache,

especially in the popular data feature. This is

demonstrated by the decrease in response time and the

increase in throughput as the number of virtual users

increased from 100 to 800. Popular data that was

previously retrieved from the MySQL database is

stored in Redis, so subsequent requests can be served

directly from memory, speeding up access time.

Based on Table 3, cache implementation reduced the

average response time in all tested cities: UC from

13,528 ms to 11,216 ms, BO2 from 14.199 ms to

11.078 ms, SV from 13.727 ms to 10.524 ms, and NY

from 13.438 ms to 10.867 ms. This indicates the

effectiveness of cache in accelerating the server's

response time to frequently accessed data requests.

According to Table 4, the average throughput

increased after the cache system was applied. In UC,

throughput increased from 18.2 KB/s to 23.7 KB/s,

BO2 from 17.5 KB/s to 23.8 KB/s, SV from 16.9

KB/s to 23.2 KB/s, and NY from 17.65 KB/s to 22.6

KB/s. This improvement indicates that caching not

file:///C:/Users/mulkiiz/Downloads/1858-3075

DINAMIKA REKAYASA VoI.21 No.2 (2025)
p-lSSN 1858-3075|e-lSSN 2527-6131 | http://jurnaIdinarek.id

172

only accelerates response time but also enhances

server efficiency in handling a large number of

simultaneous requests. The small data scale causes

the performance difference between methods to be

not very significant yet. The impact of caching would

be more substantial if applied to heavy queries or

large-scale data. Therefore, cache remains relevant

and important as a performance optimization strategy,

especially to anticipate spikes in user access load.

B. Testing the Show All Data Feature Using

Response Time and Throughput Metrics

In the Show All Data feature, testing was

conducted with 1 thread group scenario using 50

threads (users). The test was configured with a ramp-

up period of 1 second, meaning virtual users were

started incrementally every 1 second. The loop count

was set to 1 so that each user only performed the

request once. An HTTP Request configuration was

added to send a GET request to a specific server

endpoint.

There were 8 endpoints used in this test,

divided into two types. The endpoint data/{city} was

used to access data without cache, while

data/cache/{city} was used to access data with cache.

The HTTP method used was GET, and the tested

cities included four different datasets: NY, BO2, SV,

and UC.

Table 5. Testing results of the show all data feature

for the four datasets using 50 threads.

Dataset RT (ms)

without cache

RT (ms) with

cache

TH (KB/s)

without cache

TH (KB/s)

with cache

UC 21361 7971 1,2 3,1

BO2 21656 8481 1,1 2,9

SV 21255 7368 1,2 3,4

NY 21605 7293 1,1 3,5

Based on Table 5, the implementation of a

caching system has been proven to improve

application performance in terms of both response

time and throughput metrics across the four cities UC,

BO2, SV, and NY. For the response time metric, UC

experienced a decrease from 21.361 ms to 7.971 ms,

BO2 from 21.656 ms to 8.481 ms, SV from 21.255

ms to 7.368 ms, and NY from 21.605 ms to 7.293 ms.

Meanwhile, throughput also increased significantly:

UC rose from 1.2 KB/s to 3.1 KB/s, BO2 from 1.1

KB/s to 2.9 KB/s, SV from 1.2 KB/s to 3.4 KB/s, and

NY from 1.1 KB/s to 3.5 KB/s. These results

demonstrate that an in-memory caching system

significantly improves response time and increases

throughput when serving data requests, especially for

large-scale data such as 19,000 rows.

C. Testing the Show All Data Feature Using Hit

Ratio Metrics

This test was conducted by varying the

maxmemory setting from 1 to 8 MB and applying

four eviction algorithms: LRU, LFU, RR, and FIFO,

following the scheme outlined in Table 1.

The initial step involved configuring Redis's

maxmemory parameter using the command

“CONFIG SET MAXMEMORY [value]” to limit

memory usage, since Redis sets maxmemory to 0 by

default (meaning it uses all available RAM).

To support the test, the maxmemory-policy was

also set using the command “CONFIG SET

MAXMEMORY-POLICY [algorithm]”,

allowing Redis to automatically evict data based

on the selected algorithm when memory is full.

The effectiveness of each algorithm was

evaluated by monitoring Redis statistics via the

“INFO STATS” command, which displays the

number of key hits and key misses.

file:///C:/Users/mulkiiz/Downloads/1858-3075

DINAMIKA REKAYASA VoI.21 No.2 (2025)
p-lSSN 1858-3075|e-lSSN 2527-6131 | http://jurnaIdinarek.id

173

Figure 8. Comparison of hit ratio test result graphs for each dataset: (a) UC, (b) BO2, (c) SV, (d) NY

Table 6. Overall average hit ratio comparison.

Alg Avg. Hit Ratio (%) Avg. Total

(%)

UC BO2 SV NY

LRU 52,72 58,93 51,91 73,01 59,14

LFU 54,22 59,86 53,37 73,36 60,20

RR 57,05 61,28 56,21 73,72 62,06

FIFO 47,99 52,14 47,46 71,98 54,89

 Based on Table 6, the Random Replacement

(RR) algorithm demonstrated the most consistent and

superior performance, achieving the highest average

hit ratio across all datasets particularly in NY with

73.72%, and an overall average of 62.06%. This was

followed by LFU with 60.20%, and LRU with

59.14%. FIFO recorded the lowest average at 54.89%,

indicating that strategies which do not consider access

time or frequency are less effective. In contrast to the

findings by Zulfa et al. [18], this result highlights that

the RR algorithm excels under random load

conditions across all IRCache datasets. The strength

of RR lies in its simplicity and efficiency, as it does

not require additional data structures like those used

in LRU, LFU, or FIFO, thus reducing overhead while

remaining competitive especially when data access

patterns are random or unpredictable.

IV. CONCLUSION

 The design of a caching system for web

applications using the Redis in-memory database with

the Laravel framework has been successfully

implemented, where the caching system was

effectively integrated into the application, enabling

frequently accessed data to be stored in Redis to

reduce the query load on the MySQL database. Redis

proved effective in supporting a responsive and

efficient application architecture. Performance testing

of the caching system based on hit ratio, response

time, and throughput demonstrated significant

improvements in web application performance, with

response time reduced by up to three times faster in

scenarios involving large datasets of 19,000 entries

and a notable increase in throughput. Additionally, in

terms of cache replacement algorithm efficiency, the

Random Replacement (RR) algorithm recorded the

highest average hit ratio of 62.06%, followed by LFU,

LRU, and FIFO, indicating that the choice of cache

eviction strategy significantly impacts overall caching

effectiveness. Besides Redis, other caching

technologies such as Memcached or Varnish could be

file:///C:/Users/mulkiiz/Downloads/1858-3075

DINAMIKA REKAYASA VoI.21 No.2 (2025)
p-lSSN 1858-3075|e-lSSN 2527-6131 | http://jurnaIdinarek.id

174

used for comparison in terms of response time,

throughput, and memory usage efficiency. This

research confirms that cache management based on

the RR algorithm provides high efficiency in

scenarios involving massive usage and large datasets.

REFERENCE

[1] “Asosiasi Penyelenggara Jasa Internet

Indonesia.” Accessed: Feb. 25, 2025. [Online].

Available: https://apjii.or.id/berita/d/apjii-

jumlah-pengguna-internet-indonesia-tembus-

221-juta-orang
[2] Suliman, “Analisis Performa Website

Universitas Teuku Umar Dan Universitas

Samudera Menggunakan Pingdom Tools Dan

Gtmetrix,” SIMKOM, vol. 5, no. 1, pp. 24–32,

Jan. 2020, doi: 10.51717/simkom.v5i1.47.
[3] R. Ridhalri, “PEMANFAATAN CACHING

SYSTEM MENGGUNAKAN REDIS

UNTUK SISTEM PENGELOLAAN

INFORMASI AMBALAN ASHABUL

KAHFI BERBASIS WEB,” J. DIALOGIKA

Manaj. Dan Adm., vol. 4, no. 1, pp. 39–56,

Dec. 2022, doi: 10.31949/dialogika.v4i1.3750.
[4] “MySQL :: MySQL 5.7 Reference Manual ::

8.10.3 The MySQL Query Cache.” Accessed:

Mar. 01, 2025. [Online]. Available:

https://dev.mysql.com/doc/refman/5.7/en/query

-cache.html
[5] M. I. Zulfa, A. Fadli, and A. W. Wardhana,

“Application caching strategy based on in-

memory using Redis server to accelerate

relational data access,” J. Teknol. Dan Sist.

Komput., vol. 8, no. 2, pp. 157–163, Apr. 2020,

doi: 10.14710/jtsiskom.8.2.2020.157-163.
[6] J. Yang, Y. Yue, and K. V. Rashmi, “A Large-

scale Analysis of Hundreds of In-memory

Key-value Cache Clusters at Twitter,” ACM

Trans. Storage, vol. 17, no. 3, pp. 1–35, Aug.

2021, doi: 10.1145/3468521.
[7] M. Kusuma, Widyawan, and R. Ferdiana,

“Evaluasi Performa Web Server Menggunakan

Varnish HTTP Reserve Proxy dan Redis

Database Cache,” Pros. SENIATI, vol. 2, no. 2,

Art. no. 2, Mar. 2016, doi:

10.36040/seniati.vi0.824.
[8] E. S. br Haloho, N. A. Batubara, E. S.

Situmorang, K. J. H. Sinaga, P. G. Sianipar,

and I. Gunawan, “Analisis Manajemen Cache

Sistem Operasi dalam Pengoptimalisasi

Kinerja SSD Menggunakan Algoritma Least

Recently Used (LRU),” J. Inov. Artif. Intell.

Komputasional Nusant., vol. 2, no. 1, Art. no.

1, Jan. 2025, doi: 10.260396/ejgxqk64.
[9] G. Hasslinger, J. Heikkinen, K. Ntougias, F.

Hasslinger, and O. Hohlfeld, “Optimum

caching versus LRU and LFU: Comparison

and combined limited look-ahead strategies,”

in 2018 16th International Symposium on

Modeling and Optimization in Mobile, Ad Hoc,

and Wireless Networks (WiOpt), Shanghai:

IEEE, May 2018, pp. 1–6. doi:

10.23919/WIOPT.2018.8362880.
[10] “Eviction policy,” Docs. Accessed: Mar. 01,

2025. [Online]. Available:

https://redis.io/docs/latest/operate/rs/databases/

memory-performance/eviction-policy/
[11] S. Ali, “Cache Replacement Algorithm,” Jul.

30, 2021, arXiv: arXiv:2107.14646. doi:

10.48550/arXiv.2107.14646.
[12] B. A. Julastri, A. P. Sari, dan M. H. Prami

Swari, “Pengelolaan Cache pada Aplikasi

Pencatatan Penjualan Menggunakan Fuzzy

Page Replacement Algorithm,” JIKO J.

Inform. Dan Komput., vol. 8, no. 2, hlm. 404,

Sep 2024, doi: 10.26798/jiko.v8i2.1319.
[13] F. Averoes, “Peningkatan Performa Apli

kasi Web Dinamis Berbasis PHP melalui

Implementasi Redis Caching,” 2025.

[14] M. P. K. Joshi, “Redis Cache Optimization

 for Payment Gateways in the Cloud,” 2024.

[15] L. Su, M. Lin, B. Mao, J. Zhang, and Z.Xu,

“HaParallel: Hit Ratio-Aware Parallel

Aggressive Eviction Cache Management

Algorithm for SSDs,” ACM Trans Storage,

Apr. 2025, doi: 10.1145/3728644.

[16] H. Chen, Y. Pan, C. Li, and Y. Xu, “ECR:

Eviction-cost-aware cache management policy

for page-level flash-based SSDs,” Concurr.

Comput. Pract. Exp., vol. 33, no. 15, p. e5395,

2021, doi: 10.1002/cpe.5395.

[17] R. Hou, “Performance analysis of cache

replacement algorithm in information center

network and construction of electronic music

composition system,” Alex. Eng. J., vol. 61,

no. 1, pp. 863–872, Jan. 2022, doi:

10.1016/j.aej.2021.04.082.
[18] M. I. Zulfa, A. Fadli, A. E. Permana

sari, and W. A. Ahmed, “Performance

comparison of cache replacement algorithms

onvarious internet traffic,” J. INFOTEL, vol.

15, no. 1, pp. 1–7, Feb. 2023, doi:

10.20895/infotel.v15i1.872.

file:///C:/Users/mulkiiz/Downloads/1858-3075
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM
https://www.zotero.org/google-docs/?CyD5iM

